American Water Works Association 2004 Annual Conference

Bench and Pilot-Scale Investigation of Boron Removal for Seawater Membrane Desalination

Tai J. Tseng, Robert C. Cheng, Diem X. Vuong, and Kevin L. Wattier

Long Beach Water Department

June 15, 2004

Presentation Outline

- Long Beach Overview
- Long Beach's Approach
- Water Quality Concerns
- Conclusion

Presentation Outline

- Long Beach Overview
- Long Beach's Approach
- Water Quality Concerns
- Conclusion

Long Beach Water Department

- California's 5th most populous city (480,000 people)
- 70,000 AF of drinking water per year
- 5,500 AF of reclaimed water per year
- Operate largest GW treatment plant in US
- 912 miles of drinking water lines
- 763 miles of sewer lines

Long Beach Water Department

6%: Recycled Water

14%: Conservation

80%: Drinking Water

-46% LB Groundwater

-54% Imported

Imported Water Supply

Future Reliability

- Very little population growth
- Expansion of recycled water and water conservation
- Seawaterdesalination ==>necessary

supplement
City's imported
drinking water supply

Presentation Outline

- Long Beach Overview
- Long Beach's Approach
- Water Quality Concerns
- Conclusion

"Traditional" RO Process

- Uses pressures in excess of 800 psi
- Energy intensive
- → High-pressure materials required ⇒ high capital costs
- "Traditional" seawater desalination method cost prohibitive

Process Development

Patent pending 2-pass Nanofiltration (NF²) process

- EvaluatingEnergyConsumption
- Evaluating Quality protection

Presentation Outline

- Long Beach Overview
- Long Beach's Approach
- Water Quality Concerns
- Conclusion

Typical NF² Water Quality

Water quality

		Raw	Stage 1 Stage 2		LBWD
	Unit	Seawater	Permeate	Permeate	Тар
Mg ²⁺	mg/L	1532	28	0.2	13
Ca ²⁺	mg/L	546	10.1	0.1	39
SO ₄ ²⁻	mg/L	2888	33	0.2	100
Na ⁺	mg/L	11912	1280	92	75
CI.	mg/L	19737	1806	117	59
TDS	mg/L	37480	3247	218	390
Hardness (as CaCO ₃)	mg/L	7755	140	1.26	151
pН		8.01	7.84	7.37	8.16
LSI		1.12	-1.93	-4.56	0.34

ACEBor

Water Quality Concerns

Standard operating conditions:

Raw Seawater NF² Permeate

TDS

~ 34,500 mg/L

< 300 mg/L

Bromide

~ 62 mg/L

0.4 - 0.6 mg/L

Boron

~ 4.5 mg/L

?

Boron: Background

- Naturally occurring in seawater (~4.5 mg/L)
- Toxic to some common trees (0.3 1.0 mg/L)
- Show reproductive health effect in animals
- CDHS established Action Level at 1 mg/L
- No USEPA "MCL" but is on EPA CCL
- WHO guideline at 0.3 mg/L (original)
- WHO revised guideline to 0.5 mg/L (treatment limitation)
- Analytical interferences

Boron Removal

- Traditional single-pass SWRO achieves 43% -78% rejection
- LBWD's NF² Process

Stage 1 Rejection ~ 20%

Stage 2 Rejection ~ 35.1%

Overall Rejection ~ 48%

Temperature Effects on Rejection

- Boron rejection substantially deteriorates with warm water temperatures
- Some membranes are less affected by temperature, but selection may be few, limiting market competition
- Successful boron control solution must be independent of temperature

Literature Review

Technology	Water Tested	% Removal	Comments	Reference
Softening	Seawater	Insignificant	Batch tests of calcite precipitation	Kitano et al., (1978)
Coagulation	Drinking Water	<28%	Typical removal < 10%	Borax (1996)
Activated Carbon	Synthetic Water	Up to 90%	High carbon doses needed	Choi et al, (1979)
Reverse Osmosis	Seawater	43 - 78%	Survey of 8 operating RO Plants	Magara (1996)
Ion Specific Resin	RO Permeate	>99%	pH of produced waters <4.5 for 600 bed volumes	Nadav (1999)
2-pass RO with pH adjustment	RO Permeate	40 - 100%	Best removal at pH 10.5	Prats et al (2000)
Baran Chalatian	Synthetic Water	>80%	N-methyl-D- glucamine	Smith et al, (1995)
Boron Chelation	RO Permeate	>98%	Fluoride	Derwent (1997-1999)

ACEBor

Fluoride Addition

- Two fluoride sources added
 - - Adjust pH
 - **★ KF**
- Fluoride added in stoichiometric ratio increments (¼, ½, ¾, 1)

Fluoride Addition

- Initially, H₂SiF₆ addition appear to improve boron rejection.
- Improvement appears to be correlated to pH, not fluoride.
- Although lower pH improved boron rejection, lower pH deteriorated TDS quality.
- H₂SiF₆ addition appeared to reduce raw water boron levels.
- Increase in boron rejection may be associated with coprecipitation of boron.

Fluoride Addition

- Isolating pH effect by adding KF, fluoride did not appear to improve boron rejection compared to H₂SiF₆.
- ► Fluoride dose required to reach stoichiometric ratio with raw water boron was an order magnitude greater than typical water treatment doses.

Fluoride Evaluation Summary

- Reduction in pH appears to improve boron rejection, while inversely affecting TDS.
- H₂SiF₆ addition appears to improve boron rejection, but benefits appear to be associated with boron reduction in raw water, possibly due to co-precipitation.
- → H₂SiF₆ doses necessary to achieve potential boron regulatory targets may be impractical.
- Fluoride alone does not appear to improve boron rejection, as illustrated by KF addition.

Base Addition

- \bullet B(OH)₃ + OH⁻ → B(OH)₄⁻
- Boron rejection can be improved by increasing pH

Base Addition Strategy

Selecting appropriate base addition location is critical

Boron Addition Results

- California Action Level for boron is 1 mg/L.
- 1.49 mg/L would comply with action level.
- LBWD's boron goal is < 1.0 mg/L to minimize "significant digit" confusion to customers.
- NaOH (estimated) required for permeate boron to be < 1.0 mg/L.</p>

Base Evaluation Summary

- Base can be added at the pass 2 feed to prevent inorganic precipitation.
- ♦ For membranes and water tested, pH 9.2 improves boron in permeate to < 1.0 mg/L.</p>
- Increasing pH to 9.8 would meet WHO limit of 0.5 mg/L.
- Estimated cost (caustic only):
 - * < 1.0 mg/L boron = \$0.02/1000 gallons
 - *** <0.5 mg/L boron = \$0.04/1000 gallons**

Presentation Outline

- Long Beach Overview
- Planning Approach
- Water Quality Concerns
- Conclusion

Conclusions

- General WQ parameters consistent with single-pass SWRO.
- Preliminarily results suggest boron rejection with fluoride is not practical.
- Base addition can be used with NF² process for boron control, with minimal capital cost.
- Additional chemical cost (caustic soda only) for meeting regulatory guidelines is estimated at \$0.02 to \$0.04 per 1000 gallons.

References

- Borax Consolidated Limited, "Report on Sampling at Selected Water Treatment Works to <u>Determine the Extent of Boron Removal by Conventional Water Treatment"</u>, Feb. 1996.
- Choi Won-Wook et al., "Evaluation of Boron Removal by Adsorption on Solids", Env. Sci and Tech, Vol. 13(2), 189-198, 1979.
- Derwent, Machine Assisted Translation of Japanese Patents, JP10-80684, 9-220564, 9-8128325.
- Edwards, M., "Boron Removal From Drinking Water: Options and Feasibility", Presented at the AWWA Inorganic Contaminants Workshop. San Diego, CA. February 2002.
- Kitano, "Co-Precipitation of Borate-Boron with Calcium Carbonate", Geochemical Journal,
 Vol. 12, 183-189, 1978.
- Magara, Y., et al., "The Behavior of Inorganic Constituents and Disinfection By-Products in Reverse Osmosis Water Desalination Processes", Water Sci. Tech., Vol. 34, No. 9, pp 141-148, 1996.
- Nadav, N., "Boron Removal From Seawater Reverse Osmosis Permeate Utilizing Selective Ion Exchange Resin", Desalination 124, pp 131-135, 1999.
- Pastor, M.R., "Influence of pH in the Elimination of Boron By Means of Reverse Osmosis",
 Desalination 140, pp 145-152, 2001
- Prats, D., et al., "Analysis of the influence of pH and pressure on the elimination of boron in reverse osmosis", Desalination 128, pp 269-273, 2000.
- ◆ Smith, BM., et al., "Boron Removal by Polymer-Assisted Ultrafiltration", Separ. Sci. Tech., **ACEBoron.p™*ol. 30, pp 3849-3859, 1995.

 Long Beach Water Department